

2014 Marking Scheme

Grade	Mark Re	equired	« condidator achieving and
Awarded	(/ ₁₂₅) %		% candidates achieving grade
A	86+	68.8%	23.4%
В	72+	57.6%	28.0%
С	59+	47.2%	25.0%
D	52+	41.6%	9.5%
No award	<52	< 41.6%	14.0%

Section:	Multiple Choice		Extended	Answer	Investigation	
Average Mark:	29.1	/40	27.7	/60	15.1	/25

20	2014 Adv Higher Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	Reasoning				
1	В	78	EA Energy of photon is proportional to frequency of radiation E = h f \therefore E α f B Energy of photon is proportional to frequency of radiation E = h f \therefore E α f C Energy of photon is inversely proportional to wavelength E = $hc/\lambda \therefore E \alpha 1/\lambda$ D Energy of photon is proportional to frequency of radiation E = h f \therefore E α f				
2	С	76	$E = \frac{L h c}{\lambda} = \frac{6.02 \times 10^{23} \times 6.63 \times 10^{-34} \times 3 \times 10^8}{501 \times 10^{-9}} = 238997.6 \text{ J mol}^{-1} = 239.0 \text{ kJ mol}^{-1}$				
3	С	80	 ☑A 4s shell fills up before 3d ∴ electrons not in lowest ground state if 3d filled ☑B 3d shell fills up after 4s ∴ electrons not in lowest ground state if 4p filled ☑C 4s fills up 4s² before remaining 3 electrons fill 3d shell to 3d³ ☑D 4s must be completely filled before 3d starts to fill 				
4	С	76	 A wavelength absorbed dependent on type of ion (not its concentration) B frequency absorbed dependent on type of ion (not its concentration) C As concentration of ion increases more radiation is absorbed by ion D Less radiation is transmitted (more is absorbed by increased ion concentration) 				
5	D	86	 ☑A Electronegativity difference for KCl = 3.0 - 0.8 =2.2 ☑B Electronegativity difference for CaO = 3.5 - 1.0 =2.5 ∴ most ionic character ☑C Electronegativity difference for BF₃ = 4.0 - 2.0 =2.0 ☑D Electronegativity difference for PH₃ = 2.2 - 2.2 =0 ∴ least ionic character 				
6	A	61	 ☑A SF₆: 6 bonding pairs = octahedral arrangement ∴ bond angle = 90° ☑B NH4⁺:4 bonding pairs in tetrahedral arrangement ∴ bond angle = 109.5° ☑C SiCl4:4 bonding pairs in tetrahedral arrangement ∴ bond angle = 109.5° ☑D BeF4²⁻: 4bonding pairs in tetrahedral arrangement ∴ bond angle = 109.5° 				
7	A	70	⊠A BF3: 3 bonding pair = trigonal planar ⊠B NH3: 3 bonding pairs + 1 lone pair = trigonal pyramidal ⊠C OH3*: 3 bonding pairs + 1 lone pair = trigonal pyramidal ⊠D PH3: 3 bonding pairs + 1 lone pair = trigonal pyramidal				
8	D	82	 ☑A ClO⁻ ion: Cl has oxidation state = +1 ☑B ClO₂⁻ ion: Cl has oxidation state = +3 ☑C ClO₃⁻ ion: Cl has oxidation state = +5 ☑D ClO₄⁻ ion: Cl has oxidation state = +7 				
9	С	54	 A silicon carbide and diamond are networks and do not form molecules B silicon carbide and diamond are networks and do not form molecules C carbon and silicon form tetrahedrally arranged networks carbon and silicon form tetrahedrally arranged networks 				
10	В	79	 A Concentration need not be equal between weak acid and base used. B The base used should always have a high purity and stability for standardisation C strong bases should be used to neutralise weak acids D 1 mol : 1 mole ratio in balanced equation is not necessary for standardisation 				
11	D	86	EA changes in concentration, pressure & temperature can change equilibrium position EB enthalpy changes for forward & reverse cannot be equal (one is +ve, one is -ve) EC if activation energies are equal then ΔH would be zero D at equilibrium, rate of forward reaction = rate of reverse reaction				
12	В	78	$K = \frac{[CH_4]x[H_2O]}{[CO]x[H_2]^3} \therefore [CH_4] = \frac{K \times [CO] \times [H_2]^3}{[H_2O]} = \frac{3.9 \times 5.0 \times 10^{-2} \times (1.0 \times 10^{-2})^3}{4.0 \times 10^{-3}} = 4.87 \times 10^{-5}$				
13	D	65	$K = \frac{[NO]^2}{[N_2] \times [O_2]} = \frac{[6]^2}{[1] \times [3]} = \frac{36}{3} = 12$				

11	D	B 49	$\blacksquare A$ [I ₂] in X decreases as I ₂ leaves solvent X and transfers into solvent Y $\square B$ [I ₂] in X decreases as I ₂ leaves solvent X and transfers into solvent Y					
14	В		EC Partition Coefficient remains constant					
			Bond Breaking Steps Bond Forming Steps					
			$5mol C-H = 5 \times 414kJ = 2070kJ$					
15	D	77	6mol C-H 6 x 414kJ = 2484kJ 1mol C-Br 1 x285kJ = 285kJ					
15	В		$1 \text{mol Br-Br} = 1 \times 194 \text{KJ} = 194 \text{KJ} = 1 \text{mol H-Br} = 1 \times 362 \text{KJ} = 362 \text{KJ}$ $1 \text{mol C-C} = 1 \times 346 \text{KT} = 346 \text{KT} = 1 \text{mol C-C} = 1 \times 346 \text{KT} = 346 \text{KT}$					
			3024kJ 3063kJ					
			∴ Enthalpy Change = +3024kJ - 3063kJ = -39kJ mol ⁻¹					
			Endothermic Steps: Bond Breaking NB: The data booklet has					
	~		$1 \text{ mol } C - C \qquad 1 \times 346 \text{ kJ} = 346 \text{ kJ} \qquad \text{been updated since this}$					
16	С	/1	5mol C-H 5 x 414kJ = 2070kJ and values for bond enthalpies					
			are slightly different in 2742kT current data booklet.					
47		10	⊠B Hydration enthalpies are exothermic as aaseous ions dissolve in water					
1/	В	69	EC 1 st Ionisation energy is always endothermic					
			⊠D Lattice Breaking energy are always highly endothermic					
			A lattice enthalpy is Step vi: Gaseous ions forming solid ionic lattice					
18	D	94	B Electron attinity is Step v: Gaining electron to form negative ion					
	U		⊠D Atomisation enthalpy is Step i: Turning 1 mol of element into asseous atoms					
			☑A lattice enthalpy is Step vi: Gaseous ions forming solid ionic lattice					
19	Δ	87	B Electron affinity is Step v: Gaining electron to form negative ion					
17	A	07	LEC Formation enthalpy is Step i: Forming 1mol of compound from elements					
			And A tomisation entitling is Step ii. Turning I not of element into gaseous atoms $Aa^+ + e^- \rightarrow Aa$ $F^\circ = 0.80V$					
			$M^{2+} + 2e^- \rightarrow M$ $E^0 = X$					
20	٨	A 94	$2Ag^+ + 2e^- \rightarrow 2Ag$ E°= 0.80V					
20	A		$M \rightarrow M^{2*} + 2e^{-} E^{\circ} = -X$					
			$2Ag^{+}$ + M \rightarrow $2Ag$ + M ²⁺ E ^o = 0.80 - X					
			E°= 0.80 - X = 1.03V ∴ X = 0.80 - 1.03 = -0.23V ∴ Metal M is Nickel					
			2 mol of electrons transferred between half reactions \therefore h = 2 $AG^{\circ} = -n \times E \times E^{\circ}$					
21		80	$= -2 \times 96500 C \text{ mol}^{-1} \times 1.03 V$					
61	U	00	= - 198790 J mol ⁻¹					
			= - 198.79 kJ mol ⁻¹					
			⊠A Na ⁺ do not react with Ag ⁺ ions (no displacement reaction as both ions)					
22	С	65	区 Ag' ions will not oxidise Cl'ions (Ag'					
	•		D NaCl(ag) is an ionic solution and will conduct electricity					
	_		Slow Step is the rate determining step in mechanism					
23	В	67	Order of X = 1 as 1 particle of X in RDS					
			Order of Y = 1 as 1 particle of Y in RDS					
			MA Order of reaction is determined by experiment to work out individual orders					
24	Α	52	E The stoichiometry (number of moles of each reaction) does not fix the order					
			\blacksquare D The order is determined by the one step (RDS) not the sequence of steps					

		86	🗷 A reduction: decrease in the oxygen:hydrogen ratio.	
25	C		🗷 B hydrolysis: splitting molecule into two adding a small molecule over the break	
23	C	00	☑C Ethanolic potassium hydroxide is a chemical agent in elimination reactions	
			D condensation: joining molecules with the removal of a small molecule at the join	
			A hybridisation is when s and p orbitals become degenerate and form sp ³ or sp ²	
26	R	86	⊠B the central sigma bond involves the overlap of orbitals along central axis	
		00	EC A pi bond has overlapping unhybridised orbitals around the central sigma bond	
			A double bond has a central bond and further overlapping unhybridised orbitals	
	~		\mathbb{M} A first formed by the joining together of A and CT the reaction \mathbb{M} Colling chloroethene but a CTC cannot be created by this reaction	
27	В	54	\mathbf{E} C C \mathbf{H} = C is formed by the joining together of C \mathbf{H} = and C \mathbf{H} free radicals	
			\mathbb{R} D C ₂ H ₁₀ is formed by the joining together of two C ₂ H ₅ free radicals	
			A both alcohols and ethers are flammable	
			B alcohol and ethers can both be used as solvents	
28	C	71	☑C alcohols contain O-H bond with H-bonds between molecules. Ethers have no O-H bonds	
			図D alcohols can be made by nucleophilic substitution of halogenalkanes with alkali	
			ethers can be made by nucleophilic substitution of halogenalkanes with alkoxides	
			ннн ннн нн	
29	C	64	$H - C - C - C - I \longrightarrow H - C - C - C - C - H$	
_,	Ŭ			
			$HHH \sim OCH_2CH_3$ HHH HH	
			☑A methanol has a neutral pH=7	
20	٨	60	🗷 B methanoic acid has an acidic pH	
30	A	00	🗷 C phenol produces an acidic pH	
			ED benzoic acid has an acidic pH	
		54	EA -OH group heterolytically splits to produce H ⁺ ion when attached to C=O group	
31			B -OH group neterolytically splits to produce H lon when attached to C=O group	
	Ŭ	•••	\mathbb{M} D electrons delocalise in COO ⁻ aroun as both arouns behave differently attached	
			MA Fehling's solution turns brick red with aldehydes but not ketones	
22	A	7/	B bromine reacts with C=C bonds but not C=O bonds found in aldehydes/ketones	
32		16	EC 2,4-dinitrophenylhydrazine react with both aldehydes and ketones	
			🗷 D Lithium aluminium hydride reduces both aldehydes and ketones	
			From data booklet: 3300cm ⁻¹ - 3500cm ⁻¹ IR absorption = amine (not hydrogen bonded)	
	A		\mathbf{V} A (CH ₃) ₃ N is a tertiary amine and has no hydrogen bonding as it lacks N-H bond	
33		83	B CH ₃ NHCH ₃ is a secondary amine - contains hydrogen bonding on its N-H bond	
			EC-NH2 group leads to hydrogen bonding through its N-H bond	
			IMU -INH2 group leads to hydrogen bonding through its N-H bond	
	~		$\overline{M}R$ Both $-NH_2$ in structure which reacts with acid	
34	В	62	\mathbf{X} C one -NH ₂ in structure which reacts with acid	
	_		No one -NH2 in structure which reacts with acid	
			🗷 A 1,2-dichloroethane has no geometric isomers	
35		86	🗷 B 1,2-dichloropropane has no geometric isomers	
55	υ		LEC 1,1-dichloroethene has no geometric isomers	
			1,2-aichioroethene has cis- and trans- geometric isomers	
36	A	63	25cm ³ of Y will be cancelled out by 25cm ³ (of the total 75cm ³) of X	
	· remaining 50cm ³ of y in a total volume of 100cm ³ gives rotation of -79 ³			
			区A Ion fragments have a positive charge	
37	Ν	46	$\mathbb{E}[CH_2Br]^T$ has mass (1x12)+(2x1)+(1x79.9) = 12+2+80 = 94	
	U		IMC ION TRAGMENTS NAVE A POSITIVE CHARGE	
		1	שט נטגראיז ארז וועגג (טגוב)+(טגו)+(גגוץ) = אראין ארז וועגג (טגוב)+(גוין)	

			Peak with highest m/z ratio represents mass of original structure = 58 \blacksquare A Propane C ₃ H ₈ = (3×12)+(8×1) = 36+8 = 44
38	D	15	⊠B Propan-1-ol CH₃CH₂CH₂OH = (3×12)+(8×1)+(1×16) = 36+8+16 = 60
			☑C Propan-2-ol CH ₃ CHOHCH ₃ = (3x12)+(8x1)+(1x16) = 36+8+16 = 60
			☑D Propanone CH3COCH3 = (3x12)+(6x1)+(1x16) = 36+6+16 = 58
		80	🗷 A Proton NMR: flipping spin of hydrogen nuclei in a strong magnetic field
30	C		🗷 B Emission Spectroscopy: Measuring wavelengths produced when excited electrons drop down energy levels
59	C		$oxdot \mathcal{C}$ IR-spectroscopy: absorbed IR radiation of particular wavenumber vibrates particular bonds
			🗷 D Mass Spectroscopy: Mass measured by the bending of charged particles in electric field
			ablaA Active structure as it NH2 on left and NH attached to S
10	A	01	B H ₃ C- group at extreme left makes structure inactive
40	A	01	Note: Second Second Representation and the structure inactive as N-H must be attached to S
			☑D CH3- attached to N on extreme left would rotate and make structure inactive

201	4 Adv High	er Chemistry Marking Scheme						
Long Qu	Answer	Reasoning						
1a	NaCl Al2O3	CompoundNaClNa2OMgOAl2O3SiCl4PCl3pH in waterpH=7pH>7pH>7InsolublepH<7pH<7						
1b	SiCl4 PCl3	Both SiCl ₄ and PCl ₃ hydrolyse on addition to water and produced fumes of white hydrogen chloride gas.						
1c	Reacts with both acids and bases	Al_2O_3 acts as basic oxide: $Al_2O_3 + 6HCl$ \rightarrow 2AlCl ₃ + 3H ₂ O Al_2O_3 acts as acidic oxide: $Al_2O_3 + 3H_2O + 2NaOH$ \rightarrow 2NaAl(OH) ₄						
1d	Trigonal Pyramidal							
2a	One from:	$-0^{3} - 0^{-0} - 0$						
2b	Diagram showing:	◦						
2c	4 or +4 or IV	Oxidation State $(1xS) + (3xO) = -2$ S + (3x-2) = -2 S + (-6) = -2 S = -2 - (-6) = +4						
3 a (i)	-164 kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(\text{products})} - \Sigma \Delta H_{f^{\circ}(\text{reactants})}$ $= (1 \times -239) - ((1 \times -75) + (\frac{1}{2} \times 0))$ $= -239 - (-75 + 0)$ $= -239 - (-75)$ $= -164 \text{ kJ mol}^{-1}$						
3a(ii)	-162.5 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(products)} - \Sigma S^{\circ}_{(reactants)}$ $= (1 \times 127) - ((1 \times 187) + (\frac{1}{2} \times 205))$ $= 127 - (187 + 102.5)$ $= 127 - 289.5$ $= -162.5 \text{ J } \text{ K}^{-1} \text{ mol}^{-1}$						
3b	1009.2K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = 0$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$ \therefore $T\Delta S^{\circ} = \Delta H^{\circ}$ \therefore $T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-164 \times 1000 \text{ J mol}^{-1}}{-162.5 \text{ J K}^{-1} \text{ mol}^{-1}} = 1009.2 \text{ K}$						
4a	6	Each complex has a central chromium ion surrounded by 6 ligands						
4b	Tetraaquachromium (III)	$\begin{array}{c c} \hline \textbf{Tetraaquachromium(III)} = [Cr(H_2O)_4]^{3+} \\ \hline \textbf{no. of water metal nome metal ion} \\ \hline \textbf{Neutral ligands ligand name metal ion} \\ \hline \textbf{Neutral ligands include: Negative Ligands include: Central Ion: Charge: \\ \hline Ligand Name H_2O aqua \\ \hline \textbf{NH}_3 ammine Chloride Cl' chlorido \\ \hline \textbf{Cyanide CN' cyanido} \\ \hline \textbf{NH}_3 ammine CO carbonyl \\ \hline \textbf{Nitrite NO_2^- nitrito} \\ \hline Name Contract of the contract of$						

4c (i)	Answer to include:	Ligands split degenerate 3d-orbitals into two separate levels of energy. Electrons absorb energy from visible light to as this jump up to the higher 3d-orbital by d-d transitions. Once a particular wavelength has been removed, the complementary colour is transmitted						
4c(ii)	Answer to include:	Different ligands stretch the 3d-orbitals by different amounts so different wavelengths of light are required to be absorbed to provide the exact amount of energy to excite electrons by d-d transitions.						
4d	Octahedral	Chromium ion surrounded by 6 ligands in an octahedral arrangement						
4e	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁵ or [Ne] 3s² 3p ⁶ 3d ⁵	Chromium atoms have an electron arrangement of 2,8,13,1 and have an electronic configuration of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$. Cr atoms lose one electron from the 4s orbital to become Cr^+ ions and have the electronic configuration of $1s^2 2s^2 2n^6 3s^2 3n^6 3d^5$						
4 f(i)	0.0162mol	Each Chromium ion has three chloride ions associated ∴ CrCl ₃ is formula 1mol of each isomer = (1×52.0)+(3×35.5)+(12×1)+(6×16) = = 52+106.5+12+96 = 266.5g no. of mol = $\frac{mass}{gfm}$ = $\frac{2.565g}{266.5g mol^{-1}}$ = 0.00962mol						
4f (ii)	0.0192mol	$\frac{1 \mod AgCl}{no. \text{ of mol}} = \frac{\text{mass}}{\text{gfm}} = \frac{2.748g}{143.4g \text{ mol}^{-1}} = 0.0192 \text{ mol}$						
4f(iii)	Isomer B	Ratio no of moles of isomer : no of moles of AgCl precipitate 0.00962mol : 0.0192mol 1mol : 2 mol ∴ 2 mol Cl ⁻ ions free to precipitate with Ag ⁺ ions . 1 mol Cl ⁻ ions contained in the complex ∴ Formula of Complex = [Cr(H_2O) ₅ Cl ⁻] ²⁺ (Cl ⁻) ₂ ·H ₂ O . 1						
5a	о с-с он	Carboxyl groups are -COOH :. oxalic acid has 2 carboxyl groups back to back.						
5b	x=2	$\begin{array}{rcl} 1 \text{mol } CaSO_4 &= (1x40.1) + (1x32.1) + (4x16) &= 40 + 32.1 + 64 &= 136.2g\\ & \textbf{no. of mol} &= & \frac{\textbf{mass}}{\textbf{gfm}} &= & \frac{3.89g}{136.1g \text{ mol}^{-1}} &= 0.0286 \text{mol}\\ \\ \text{Mass of } H_2O &= & \text{mass of hydrated } CaSO_4 - \text{mass of dehydrated } CaSO_4 \\ &= & 4.94 & - & 3.89\\ &= & 1.05g\\ 1 \text{mol } H_2O &= (2x1) + (1x16) &= 2 + 16 &= 18g\\ & \textbf{no. of mol} &= & \frac{\textbf{mass}}{\textbf{gfm}} &= & \frac{1.05g}{18g \text{ mol}^{-1}} &= 0.0583 \text{mol}\\ \end{array}$						
6a		CH ₃ Cl heterolytically splits into CH ₃ ⁺ and Cl ⁻ with AlCl ₃ catalyst +CH ₃ AlCl ₃ CH						
	Chloromethane	CH ₃ AlCl ₃ CH ₃ CH ₃ CH ₃						
6b	Chloromethane Aluminium Chloride or AlCl ₃	AICI3 benzene methylbenzene						
6b 6c	Chloromethane Aluminium Chloride or AlCl ₃ Electrophilic Substitution	The reaction is substitution as a group is removed and a group joins on to replace it. The substitution must be of electrophilic type as the chemical joining must be attracted to centres of negative charge like the benzene ring.						
6b 6c 7a(i)	Chloromethane Aluminium Chloride or AlCl ₃ Electrophilic Substitution Addition	The reaction is substitution as a group is removed and a group joins on to replace it. The substitution must be of electrophilic type as the chemical joining must be attracted to centres of negative charge like the benzene ring. C=O group in methanal has H added onto the O end and the remainder added to the C end of C=O bond.						

7 b(i)	Answer showing:	HCI HH H H H-Ç-Ç-C, G Cl-Ç-Ç-C,					
/ 5(1)		HH (2-chloropropanal)					
7b(ii)	Product as shown:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
7b(iii)	Lithium Aluminium Hydride	Lithium Aluminium Hydride is a reducing agent and will reduce the aldehyde group to a hydroxyl group					
8a	Diagram showing:	H = C + C + C + C + C + C + C + C + C + C					
8b(i)	A	Peak (cm-1)Group IdentifiedPresent in Ibuprofen1600Benzene ring✓✓1690C=O stretch in aromatic/alkyl ketones✓✓1720Aromatic carboxylic acid✓✓3300Alcohol/phenol (hydrogen bonded)✓✓					
8b(ii)	A would form a derivative with Brady's Reagent (2,4-dinitrophenylhydrazine) with a precise melting point	Brady's Reagent (2,4-dinitrophenylhydrazine) forms a solid derivative with the carbonyl C=O group in chemical A which has a precise melting)point. Chemical B does not have a carbonyl C=O group and no derivative is formed with Brady's Reagent.					
8b(iii)	Answer to include:	Bromine atom in chemical B is replaced with nitrile -CN group (this a achieved by nucleophilic substitution with HCN) Hydrolysis of the nitrile -CN group will produce a carboxyl group (this is achieved by acid hydrolysis)					
9a	Phosphoric acid	AH PPA 3.4 Technique Question					
9b	Ethanol	AH PPA 3.4 Technique Question					
9с	5.72g	1 mole aspirin C ₉ H ₈ O ₄ = (9x12)+(8x1)+(4x16) = 108+8+64 = 180g 67% yield produces 5.00g aspirin ∴ 100% yield produces 5.00g x $^{100}/_{67}$ = 7.46g aspirin no. of mol aspirin = $\frac{mass}{gfm}$ = $\frac{7.46}{180}$ = 0.0414mol 2-hydroxybenzoic acid → aspirin 1mol 1mol 0.0414mol 1mol 2-hydroxybenzoic acid C7H ₆ O ₃ = (7x12)+(6x1)+(3x16) = 84+6+48 = 138g mass = no. of mol x gfm = 0.0414mol x 138g mol ⁻¹ = 5.72g					

	1		Experiment	Change	Effect on Rate	Order of reactant		
10a(i)			1+3	[CH₃CHIC₂H₅] ×3	x3	[CH₃CHIC₂H₅] ¹		
10a(ii)	0		1+2	CH3CHIC2H5] x2 and [OH]x 2	x2	If [CH3CHIC2H5] ¹ then [OH] ⁰		
10b(i)	Rate = k[CH3CHIC2H5]	Rate = $k \times [CH_3CHIC_2H_5]^1 \times [OH]^0$ \therefore Rate = $k[CH_3CHIC_2H_5]$						
				rate = k	× [CH ₃ CHIC ₂ +			
10b(ii)	1.4×10 ⁻³ s ⁻¹	$\therefore k = \frac{\text{rate}}{[CH_3CHIC_2H_5]}$ $= \frac{1.4 \times 10^{-4} \text{ mol } l^{-1} \text{ s}^{-1}}{0.10 \text{ mol } l^{-1}}$ $= 1.4 \times 10^{-3} \text{ s}^{-1}$						
10c	Mechanism showing:	$\begin{array}{c} \begin{array}{c} H \\ H $						
10d	Answer to include:	OH ⁻ ions can attack the planar carbocation intermediate from either side which would produce both optical isomers. A racemic mixture of both						
11a	so only the [I2] varies <u>or</u> so [H ⁺] and [CH3COCH3] remain constant/same	AH PPA 1.5 Technique Question						
11b	sodium hydrogencarbonate (solution)	AH	I PPA 1.5 Te	echnique Question				
11c	Sodium thiosulphate	AH	I PPA 1.5 Te	echnique Question				
11d	Zero order	Straight line relationship in graph \therefore gradient is constant at any concentration Rate of reaction = gradient of line \therefore changing [I ₂] has no effect of reaction rate \therefore zero order kinetics with respect to I ₂						
12a(i)	0.333 mol l ⁻¹	no. of mol K ⁺ = volume x concentration = 0.02 litres x 1 mol l ⁻¹ = 0.02mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.02 \text{ mol}}{0.06 \text{ litres}}$ = 0.333 mol l ⁻¹						
12a(ii) 12b	6.17 Answer to include:	no. of mol H [*] = volume x concentration = 0.04 litres x 1 mol l ⁻¹ = 0.04mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.04 \text{ mol}}{0.06 \text{litres}}$ = 0.667 mol l ⁻¹ pH = pK _a - log $\frac{[acid]}{[salt]}$ = 4.76 - log $\frac{0.667 \text{ mol l}^{-1}}{0.333 \text{ mol l}^{-1}}$ = 4.76 - log(2.00) = 4.76 - 0.301 = 4.46 pH = -log_{10}[H ⁺] = 4.46 \therefore log_{10}[H ⁺] = -4.46 \therefore [H ⁺] = 10 ^{-4.46} = 3.47×10 ⁻⁵ mol l ⁻¹ OH ⁻ ions would neutralise H ⁺ ions						